Fraunhofer Group for Life Sciences

Applied Science Dedicated to Life

Cooperation on Pharmaceutical R&D between industry-public authorities-universities: Importance of effective collaboration

Istanbul, October 23rd

Joseph von Fraunhofer (1787-1826)

Researcher – inventor – entrepreneur

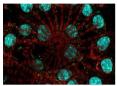
An early pioneer with visions

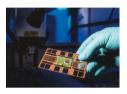
Researcher

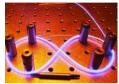
Discovery of »Fraunhofer Lines« in the sun spectrum

Inventor

new methods of lens processing


Entrepreneur


Head of royal glass factory



Profile of Fraunhofer-Gesellschaft

- 66 institutes
- over 22,000 employees
- Budget of 2 billion euros

Seven Fraunhofer Groups

- Information and Communication Technology ICT
- Life Sciences
- Microelectronics
- Light & Surfaces
- Production
- Materials and Components MATERIALS
- Defense and Security VVS

Creating Innovation at Fraunhofer

Taking the Role of the Other:

- Complementarity
- Gender and Diversity
- Intercultural Cooperation

Positioning – Fraunhofer Group for Life Sciences

Research for human health and the environment

- Six strongly performing Fraunhofer institutes and a Fraunhofer research institution are collaborating in the Group
- 1707 employees
- Budget of 124 million euros (2013)
- Scientists, physicians, and engineers in close cooperation
- Synergies from cross-disciplinary cooperation
- applied research aimed at market-oriented solutions

Increase the Potential:

Systematic recording, evaluation of synergy potential, identification of overlapping developmental topics and involved players

Pharmacogenetics, Pharmacogenomics

Stratification of clinical studies

In vitro
diagnostics up
to in vivo
diagnostics
(preventive
medicine)

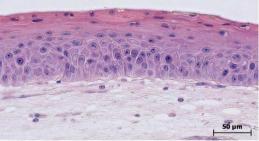
Body-areanetworks

Biomarkers

Autologous tissue engineering

Automated Tissue Engineering on Demand

Values


In-vitro-test systems

- Reduction of experiments with animals as part of REACH, cosmetic testing, and drug development
- Fulfillment of high quality standards standardization and automation of quality control for optimized clients' test results
- Sustainable use of resources non-destroying quality control methods

Skin-transplants

Quick and sufficient availability of high quality transplants

Custom-Made Tissue Models – Tissue Engineering on Demand

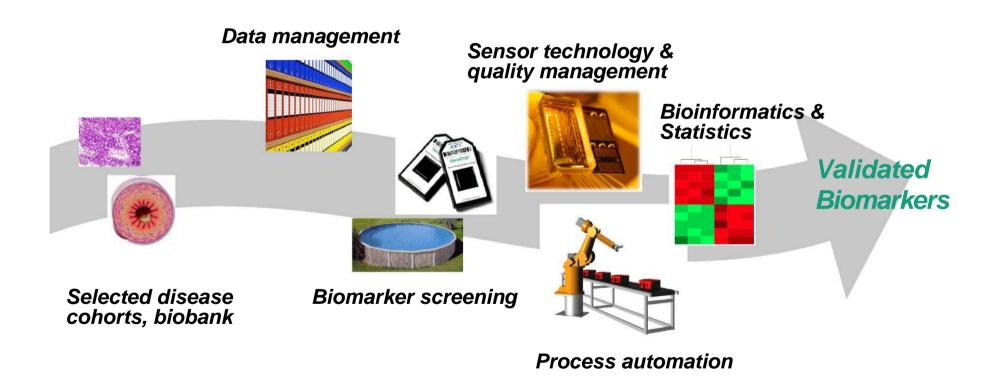
Goal

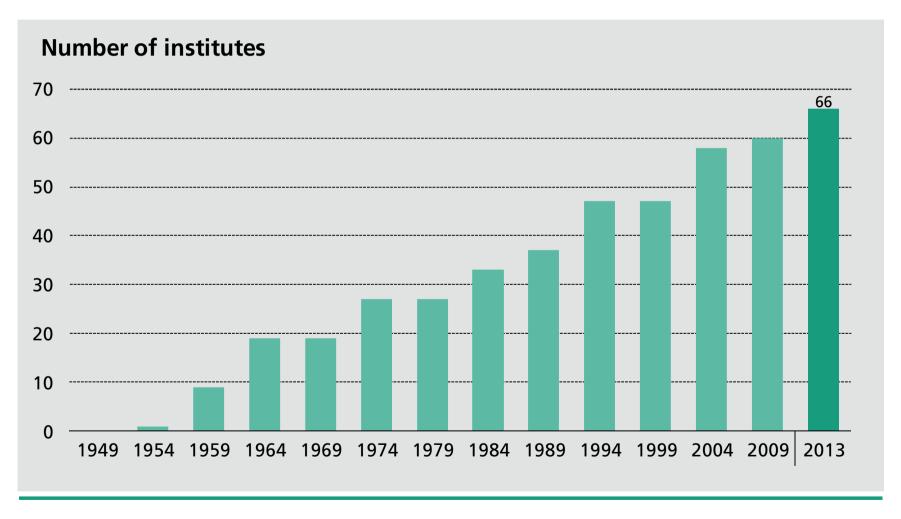
- Automation of a manually established tissue-engineering-method
- Increase production of human skin test models for in-vitro chemical, drug, and cosmetics tests

Methods

- Re-engineering of every step of the laboratory procedure to automate the complete process
 - → Knowledge transfer and intensive dialogue between biologists and engineers
- Construction and development of the complete facility including new processing methods and new tissue dissociation and bioreactor systems

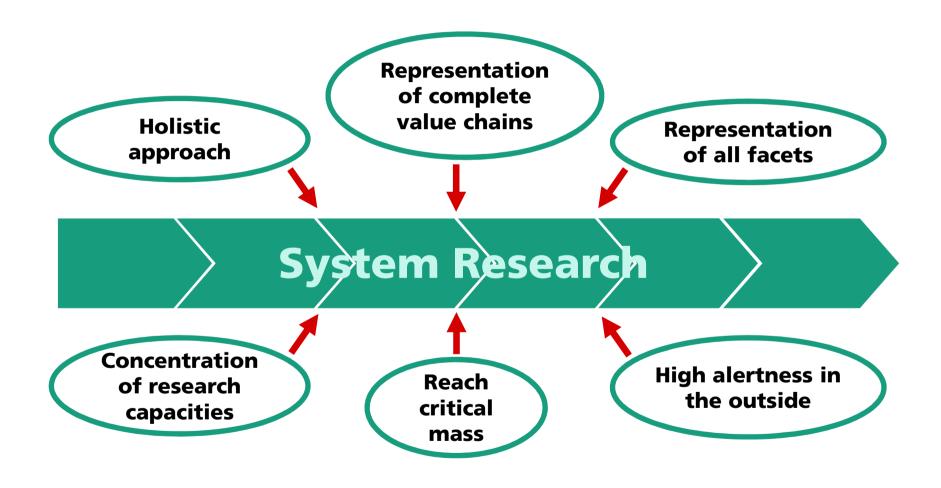
Results


 Optimized production of in-vitro-skin test models currently 5,000 units per months possible



Biomarker Screening – Fraunhofer Foundation Project RIBOLUTION

Innovative Ribonucleic Acid-based
Diagnostic Solutions for Personalized Medicine



From a Small Association to the Leading Organization for Applied Research in Europe

Networking of Players and Collaboration through System Research, e.g. Electromobility

Business Units and Highlights

BU₁

Medical Translational Research and Biomedical Technology:

The Challenge of Innovative Diagnostics and Personalized Therapy

BU₂

Regenerative Medicine:

The Challenge of Qualified Biobanking and Controlled Self-Healing

BU 3

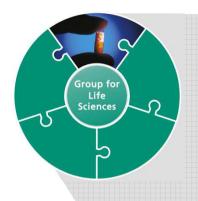
Healthy Foods:

The Challenge of High Consumer Acceptance and Disease Prevention

BU 5

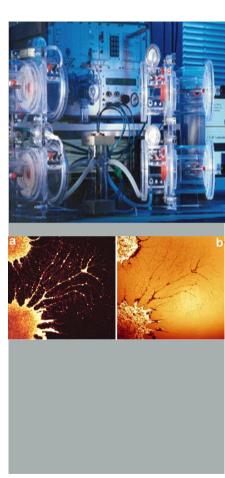
Process, Chemical, and Herbicide Safety:

The Challenge of Environmental and Consumer Protection

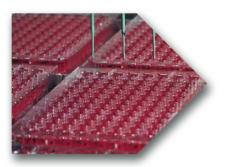

BU 4

The New Potential of Biotechnology:

The Challenge to Learn from Nature for Industrial Exploitation


BU 1 Medical Translational Research and Biomedical Technology: The Challenge of Innovative Diagnostics and Personalized Therapy

Our responses


- innovative biomarkers for prognosis and therapy control
- wide variety of chip systems for in-vitro diagnostics – one component on the road to personalized therapy
- highly effective antibiotics from new sources such as insects
- improved imaging technology
- GMP platform with a wide range of expression systems
- ecological product design of pharmaceuticals

Successful treatment through optimally tailored, personalized therapy

Translational Medicine: From Molecule to Patient Bio-Hybrid and Cell-Based Tests – Early Go/No-Go Decisions

Target and drug discovery

- Databases: gene expression profiles
- High-throughput screening
- Array technologies
- Biochips: DNA chips, protein chips
- Cell-based assays and chips

Target validation

- Animal transgenic and in-vitro 3-D human disease models
- Large-animal models
- Behavioral animal models
- Cardiovascular and neuronal organotypic models and disease models

Lead optimization

- Structure optimization and humanization
- Aerosol generation
- High-content screening
- Human cell models
- Organotypic cell culture models

GXP Platform: GLP – GMP – GCP

APIs/Vaccines/Cell Therapeutics – System-independent Solutions – Clinical Studies Airways

Safety pharmacology and toxicology

- GLP
- In-silico prediction ADME
- Molecular and functional imaging
- Nano- and microparticle systems
- Biomarkers of disease

Manufacture of clinical investigational products

- Consulting on regulatory and economic aspects
- Evaluation of customer processes
- GMP facilities
- Compound libraries and high-throughput systems
- Expression systems

Clinical trials of phases I and II

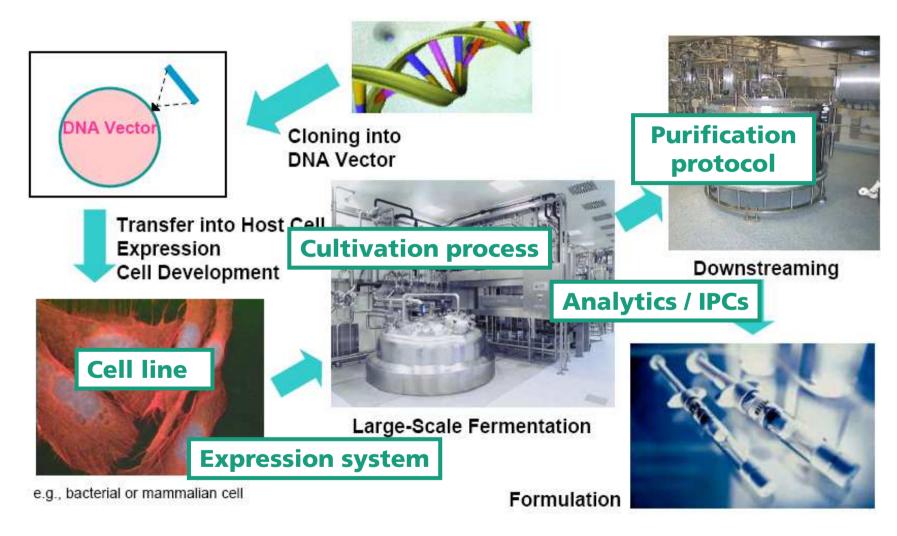
- GCP-compliant protocol development
- Toxicology and pharmacology
- Dose escalation studies in patients with malignant diseases
- Segmental lung challenge

Pharmaceutical Biotechnology

- GMP- und non-GMP manufacturing of APIs
- Development of manufacturing processes
- Stability testing
- Validation of the manufacturing and purification process
- Aseptic filling of small quantities (Fill & Finish)

Highlights GMP Services

- Development of robust and standardized production cell lines and manufacturing processes
- Manufacturing of active pharmaceutical ingredients (APIs) for pre-clinical and early-phase clinical trials
- Manufacturing of APIs, tissue engineering products, organoid test systemens and cellular therapeutics for clinical studies
- Expression systems: mammalian cell cultures, yeasts, E. coli, plant cell cultures



Manufacturing Processes for Biosimilar Drug Substances Developed at Fraunhofer e.g.

Individual molecules ↔ **individual manufacturing process**

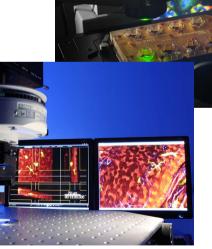
Access Points for the Standardization of Antibody Manufacturing Processes

Modified from GB Kresse, Roche Diagnostics GmbH, 2009

Elements of Fast Antibody Manufacturing Process Development at Fraunhofer

- Standard cell line for the expression of different antibodies
- 2. Generic high cell density cultivation process
- 3. Robust and generic purification sequence
- 4. State of the art spectrum of analytical procedures

Implementation of generic elements in the antibody manufacturing process make process development independent from


- the target antibody and
- the starting materials

Pre-clinical Studies

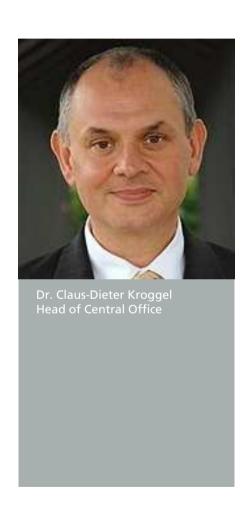
- Toxicity studies in rodents and non-rodents
- Reproduction toxicity studies
- Genetic and *In-vitro*-toxikology
- Inhalation toxikology/Pharmacology
- Immunology and immunotoxicity tests

Clinical Trials Airways

- Clinical trials phase I and IIa
- Bronchoskopy with isolation of test samples
- Spirometry
- Fraunhofer Environmental Challenge Chambers ECC

Balance, Harmony, and Empathy Research for Mankind

Do not hesitate to contact us


We are pleased to help you find answers to any questions you might have or solutions you are looking for.

Please contact our Central Office:

Dr. Claus-Dieter KroggelHead of Central Office

Fraunhofer Group for Life Sciences PHARIS Haus Feodor-Lynen-Str. 31 30625 Hannover Germany

Phone +49 511 5466-440 claus.kroggel@vls.fraunhofer.de

